
BACHELOR THESIS

Ondřej Měkota

Anomaly Detection Using Generative
Adversarial Networks

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the bachelor thesis: RNDr. Jǐŕı Fink, Ph.D.
Study programme: Computer Science

Study branch: General Computer Science

Prague 2019



I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In ................. date .................

i



I would like to thank my advisor RNDr. Jǐŕı Fink, Ph.D. for his patience, time
and his valuable comments, and suggestions. I would also like to thank my family
for their support.

ii



Title: Anomaly Detection Using Generative Adversarial Networks

Author: Ondřej Měkota

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: RNDr. Jǐŕı Fink, Ph.D., Department of Theoretical Computer Sci-
ence and Mathematical Logic

Abstract: Generative adversarial networks (GANs) are able to capture distribu-
tion of its inputs. They are thus used to learn the distribution of normal data
and then to detect anomalies, even if they are very rare; e.g. Schlegl et al. (2017)
proposed an anomaly detection method called AnoGAN. However, a major disad-
vantage of GANs is instability during training. Therefore, Arjovsky et al. (2017)
proposed a new version, called Wasserstein GAN (WGAN).

The goal of this work is to propose a model, utilizing WGANs, to detect fraud-
ulent credit card transactions. We develop a new method called AnoWGAN+e,
partially based on AnoGAN, and compare it with One Class Support Vector Ma-
chines (OC-SVM) (Schölkopf et al. (2001)), k-Means ensemble (Porwal et al.
(2018)) and other methods. Performance of studied methods is measured by area
under precision-recall curve (AUPRC), and precision at different recall levels on
credit card fraud dataset (Pozzolo (2015)). AnoWGAN+e achieved the highest
AUPRC and it is 12% better than the next best method OC-SVM. Furthermore,
our model has 20% precision at 80% recall, compared to 8% precision of OC-SVM,
and 89% precision at 10% recall as opposed to 79% of k-Means ensemble.

Keywords: anomaly detection, generative adversarial networks, neural network,
deep learning

iii



Contents

Introduction 2

1 Background 4
1.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Generative adversarial networks . . . . . . . . . . . . . . . . . . . 7

1.3.1 Wasserstein GAN . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Adversarially Learned Inference . . . . . . . . . . . . . . . 9

2 Related Work 11
2.1 Anomaly detection methods . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 k-Means ensemble . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 One Class Support Vector Machine . . . . . . . . . . . . . 12
2.1.3 Isolation Forest . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 GAN based methods . . . . . . . . . . . . . . . . . . . . . 12

3 Our anomaly detection model 14
3.1 AnoGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 AnoWGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Experiments 16
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 AnoWGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 Learning normal data distribution . . . . . . . . . . . . . . 17
4.2.2 Detecting anomalies . . . . . . . . . . . . . . . . . . . . . 18
4.2.3 Training and hyperparameters . . . . . . . . . . . . . . . . 19

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.1 Hyperparameters of baselines . . . . . . . . . . . . . . . . 22
4.3.2 Hyperparameters of AnoWGAN . . . . . . . . . . . . . . . 23

4.4 Efficient AnoGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Evaluation 26
5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Conclusion 30

Bibliography 31

List of Figures 34

List of Abbreviations 35

A Attachments 36
A.1 First Attachment – AnoWGAN+e scripts . . . . . . . . . . . . . . 36

A.1.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1



Introduction
The need for anomaly detection can be seen in many aspects of our lives. In
medical science, researches and doctors want to identify ill patients using various
indicators. For example, trying to diagnose cancer from tissue screening can be
done using outlier detection methods. A tissue of patients who have cancer will be
considered anomalous and the rest normal. Automotive industry is another field
where outlier detection is essential. Engineers want to know whether there is a
malfunction or irregularity in some part of an assembled car. Internet companies
are frequently faced with problems concerning their networks caused by intruders,
those also can be revealed using anomaly detection methods.

Often, anomalies are rare and therefore it is difficult for supervised machine
learning algorithms to capture their distribution. For that reason, unsupervised
methods are utilized. They either learn from datasets consisting of only normal
samples or from all, unannotated samples. Both of those methods can work, one
that learns from normal examples is usually able to distinguish anomalies more
accurately.

Banks need to be able to detect fraudulent credit card transactions. According
to Mehrota et al. [1], credit cards of millions of people have been compromised
in 2013. Unauthorized access to credit cards costs billions of dollars annually [1].
Problem is that actual frauds do not occur very often among all transactions,
this means supervised algorithms would be hard to utilize. Thus it is necessary
to use an unsupervised solution.

With the prevalence of deep learning in the last couple of years, scientists
started to explore the possibility of deploying deep learning and neural networks
in the area of anomaly detection [2]–[5]. We chose to study anomaly detection
methods using Generative adversarial networks (GANs) because they show good
results in imagery data [2] and we wanted to try them on non-visual data. In this
thesis, we propose an unsupervised model based on GAN for detecting fraudulent
credit card transactions.

Goals of this thesis are:

• Study methods described in articles by Schlegl et al. [2] and Zenati et al. [3].

• Propose alternative training procedure of encoder used in [3] with better
stability.

• Set suitable hyperparameters so that studied methods are able to perform
fraud detection on Credit Card Fraud Dataset (CCFD) [6].

• Compare the performance of studied methods with the performance of Iso-
lation Forest [7], k-Means ensemble [8] and One Class Support Vector Ma-
chines (OC-SVM) [9].

• Analyze results and discuss the advantages and disadvantages of compared
methods.

Contribution of this thesis is improving the method described in article [2],
by switching GAN for Wasserstein GAN and introducing an encoder to latent

2



space; hence, making it more precise and much more faster during evaluation.
Our method overcomes the instability of [3] by training the encoder independently
of the training of the generator and the critic.

Main result of this thesis is introducing a new method for detecting anomalies.
We show that our model (AnoWGAN+e) achieves higher area under precision-
recall curve (AUPRC) than k-Means ensemble, Isolation Forest and OC-SVM,
which is the state-of-the-art to the best of our knowledge. Our method has
substantially higher precision at some recall levels, see table 5.2.

Structure
The thesis is divided into five chapters. Chapter 1 describes machine learning,
neural networks, and Generative adversarial networks, which are the main sub-
ject of our work. Furthermore, it provides the reader insight into some areas of
statistics which are necessary to understand the underlying principles of anomaly
detection methods.

Chapter 2 shows literature review of anomaly detection methods – One Class
Support Vector Machines [9], k-Means ensemble [8], Isolation Forest [7], and
GAN-based methods [2], [3], which are further discussed in Chapter 3.

Chapter 3 contains a description of our model anomaly detection model, called
AnoWGAN.

Chapter 4 contains information about CCFD, about conducted experiments,
particular setting of hyperparameters of our model to detect fraudulent credit
card transaction in CCFD and implementation details.

Chapter 5 is about measurements of performance of studied methods, their
comparison and discussion about the results.

3



1. Background
In this chapter, we discuss some basic techniques, algorithms, and tools necessary
to understand methods used for anomaly detection in this thesis. Firstly we talk
about machine learning and neural networks, what they are and what kind of
tasks can they solve. Next section’s concern are statistical tools whose knowledge
is essential to understand anomaly detection methods used in this thesis. Finally,
in the last section, we show what Generative adversarial networks are, what
problems they have and how to solve those problems.

1.1 Machine Learning
Mitchell [10] defines machine learning as ”A computer program is said to learn
from experience E with respect to some class of tasks T and performance measure
P, if its performance at tasks in T, as measured by P, improves with experience
E.” We do not provide formal definition of experience E, tasks T and performance
measure P but rather informally explain what they mean.

The task is usually either classification or regression. But many other, not so
extensively used, tasks exist [11]. In classification, one tries to find a mapping
from some feature space Rn to k categories [11]. Regression is a task where the
objective is finding a mapping from Rn to R.

In order to be able to evaluate a model, we need a performance measure or
a loss function. This can be for example accuracy, precision or error rate in case
of classification tasks [11]. For regression, we usually utilize some continuous
distance between the predicted value and the real value.

Experience is the data that learning algorithm is allowed to see during train-
ing. Learning algorithms can be categorized to two categories: supervised and
unsupervised.

Unsupervised algorithms are only provided a dataset containing features that
are generated by an underlying distribution. We usually aim to learn this under-
lying distribution [11].

Supervised methods also have access to label of class, when performing clas-
sification, or to target when performing regression.

The division between these categories is not clear and sometimes it raises a
call for another category: semi-supervised algorithm, where some examples do
have a label or a target and some do not. Definitions of these categories vary in
literature [12].

1.1.1 Neural Networks
Neural networks, more specifically deep neural networks, are a class of machine
learning algorithms. The aim of neural network is to find approximation of
function y = f ∗(x), which maps inputs x to the output y, with parametrized
function y = f(x, θ). The inputs are fed through multiple layers of the net-
work: y = f (n)(· · · f (2)(f (1)(x))). All of those functions are parametrized by
different parameters.

4



The more layers network has, the deeper we say it is. Figure 1.1 shows a three-
layer neural network. Each edge (which are oriented from inputs to outputs) is
associated with weight w and each neuron (grey circles in the figure) with bias b.
Value at the start of an edge is multiplied by the edge’s weight and summed with
the bias of the neuron at its end. For example, the output of the first neuron in
hidden layer (in Figure 1.1) looks like this

f (1)(x1 ∗ w11 + x2 ∗ w21 + b1).

x1

x2

b1

b2

b3

y

w11

w12

w13

w21

w22

w23

Hidden layer f (1)Input layer Output layer f (2)

Figure 1.1: Neural network with input layer of size 2, one hidden layer of size 3
and output layer of size 1.

Then the resulting values of all incoming edges of a neuron are summed to-
gether and some differentiable activation function f is applied to the result. Ac-
tivation function is usually sigmoid, hyperbolic tangent, relu or softmax [11]. This
whole process is called forward propagation and it can be thought of as applying
the approximation of function f to the inputs.

This approximation is, at the beginning of the training process, random as
the parameters w and b are randomly initialized. Now, we would like to adjust
them in order to get better performance. This is done by defining loss function,
a performance measure described in the previous section.

Our objective is to minimize the loss function with respect to the input. Nat-
ural way to discover the direction in which to minimize the loss function is to find
its derivatives with respect to each training parameter. The obtained derivative is
then multiplied by learning rate α ∈ (0, 1) and subtracted from the corresponding
parameter:

θ ← θ − α
∂L

∂θ
,

where L is the loss function. The described procedure is the simplest algorithm
used for this purpose: stochastic gradient descent [11].

The optimization algorithm we use is called Adam [13]. It is based on stochas-
tic gradient descent algorithm but is more complicated as it takes into account

5



past gradients and second moments of those gradients. The advantage of Adam
is that it converges faster to the desired value and it is not as prone to converging
to local minima like stochastic gradient descent is.

In previous paragraphs we considered the networks to take one training in-
stance at a time, compute gradients and apply them on parameters using opti-
mizer. This is not always the case. Some number (called mini-batch or batch) of
instances is usually propagated through the neural network, their gradients are
acquired, averaged and the descent is applied only once on the parameters [11].
This is an important technique which minimizes variance of the loss function, as
our estimate of direction, in which we minimize, is more confident because the
gradients are computed using more training samples. Also, it is often infeasible
to use all instances in the train set as a batch because it would take the model
long time to converge, as the algorithm would have to compute gradients for the
whole set and then perform only one training step.

1.2 Statistics
To design good quality loss function, maximum likelihood principle is used [11].
Let p(x) be a distribution function of random vector x, p(x; θ) is a distribution
of x explicitly parametrized with θ. We call the set {p(x; θ) | θ ∈ Θ}, where Θ
is a set of all possible values θ can have, a family of probability distributions.
The expectation of function f(x) with respect to some continuous probability
distribution p is defined

E x∼p[f(x)] =
∫

p(x)f(x)dx.

Let pdata(x) be the probability distribution of x, pdata is unknown data gener-
ating distribution that we wish to estimate. Let p̂data be the empirical distribution
of x defined by training samples X.Let pmodel(x; θ) be an estimation of pdata(x),
which is the probability of x in distribution pdata.

The maximum likelihood principle [11] states that given examples X, drawn
independently from data distribution pdata(x), parameters θ are estimated as
such:

θML = arg max
θ

pmodel(X; θ) (1.1)

= arg max
θ

E x∼p̂data
[log pmodel(x; θ)], (1.2)

Maximum likelihood estimation can be interpreted as minimizing the dissim-
ilarity between two probability distributions, P and Q, measured by Kullback-
Leibler divergence (KL divergence), defined:

DKL(P ∥ Q) = E x∼P [log P (x)− log Q(x)]. (1.3)

Similar divergence is Jensen-Shannon divergence (JS divergence) which is de-
fined:

DJS(P, Q) = DKL(P ∥ R) + DKL(Q ∥ R) (1.4)
where R is (P + Q)/2. Unlike KL divergence, JS divergence is symmetrical:

DJS(P, Q) = DJS(Q, P ).

6



Another divergence, which we actually use in this work, is called Wasserstein
distance or sometimes called Earth-Mover distance [14], see section 1.3.1:

W (P, Q) = inf
γ∈Π(P,Q)

E (x,y)∼γ[|x− y|], (1.5)

where Π(P, Q) is the set of all joint distributions of γ(x, y). The infimum in (1.5)
is intractable but the equation can be rewritten using Kantorovich-Rubinstein
duality [15]:

K ·W (P, Q) = sup
∥f∥L≤K

E x∼P [f(x)]− E x∼Q[f(x)], (1.6)

where K ∈ N and ∥f∥L ≤ K means that function f is K-Lipschitz continuous.
K-Lipschitz continuousness is defined

|f(x1)− f(x2)| ≤ K · |x1 − x2| .

In order to evaluate and compare trained models we need to choose suitable
metric. We use two metrics: precision at different recall levels and area under
precision-recall curve (AUPRC). We consider anomalies to be the positive class.
Let us define precision:

precision = |TruePositives|
|TruePositives|+ |FalsePositives|

,

recall as
recall = |TruePositives|

|TruePositives|+ |FalseNegatives|
,

where the absolute value signifies the number of examples belonging to the set
in question (true positives, false positives, ...). PR-curve describes how precision
reacts to a change in recall.

Precision-recall curve is dependent on the ratio of positives and negatives, or
anomalies and normals respectively. Even though some other metrics, for example
receiver operating characteristic (ROC) curve, are class balance independent, they
are not as good for evaluation of models trained on highly imbalanced datasets as
PR curve is; since even the simplest baseline — always choosing the most common
class — achieves a very high score. On the other hand, when computing the
quality of such classifier under AUPRC, it completely fails. In [8] they empirically
show that PR-curve is better than ROC curve on imbalanced datasets.

1.3 Generative adversarial networks
Generative adversarial networks (GANs) [16] is a machine learning method em-
ploying two elements which play min-max game. Informally said the generator
is trying to generate instances as similar as possible to the real data and the
discriminator is trying to decide whether given example comes from real data or
has been generated. The objective function is

V (D, G) = E x∼p̂data
[log D(x; θd)] + E z∼pz [1− log D(G(z; θg); θd))], (1.7)

7



where p̂data is the empirical distribution defined by training data and pz is the
distribution of latent variable z (usually normal or uniform). Parameters of
generator and discriminator are θg and θd respectively.

Generator and discriminator then play the following game
min

G
max

D
V (D, G), (1.8)

i.e., the discriminator is trying to maximize its output on real data and at the
same time minimize its output on the generated data. Generator, on the other
hand, tries to minimize 1 − D(G(z)), forcing the discriminator into producing
high outputs on generated data.

Training GAN is equivalent to minimizing Jensen-Shannon divergence (1.4).
GAN learns manifold of its inputs. Manifold X is a topological space for

which the following holds: neighbourhood of every point on X is homomorphic to
euclidean space [11], hence every point has continuous neighbourhood. Learning
distribution of the inputs usually means learning the manifold they occupy.

Figure 1.2 depicts a generative adversarial network.

Generator G(·)

z ∼ pz

x̃ ∼ pmodel

x ∼ p̂data

Discriminator D(·)

D(x) ∈ R

Figure 1.2: Illustration of GAN. The darker grey rectangles represent arrays of
neurons and the lighter grey shapes are connections between them.

8



1.3.1 Wasserstein GAN
GANs suffer from many problems [17], due to their sensitivity to hyperparame-
ters. Such as mode collapse, this is state of the network in which generator tends
to generate very similar instances. Another problem is vanishing gradients, which
happens when JS divergence increases and the gradients are getting closer to zero.
Furthermore, it can easily happen that the loss will diverge from the optimum.

These problems are addressed in [14] where they propose a new architecture
called Wasserstein GAN (WGAN) based on Earth-Mover distance (also called
Wasserstein distance). Instead of using JS divergence to measure the divergence
between the distribution of real instances p̂data and the distribution of the gen-
erated ones pmodel, Earth-Mover distance (1.6) is utilized. Also, they call the
discriminator critic.

This approach yields better results because W (p̂data, pmodel) is continuous func-
tion on θ under some mild assumptions, as opposed to JS divergence [14].
W (p̂data, pmodel) is defined as such:

W (p̂data, pmodel) = sup
∥f∥L≤1

E x∼p̂data
[f(x)]− E x̃∼pmodel

[f(x)], (1.9)

where ∥f∥L ≤ 1 means that function f is 1-Lipschitz.
To find function f they have constructed neural network which utilizes weights

clipping to some compact space W , which ensures the K-Lipschitz property of f
(K is dependent only on W).

Alternative way to enforce functions to be K-Lipschitz is gradient penalty
introduced in [18]. The new loss function for critic is:

L = E x̃∼pmodel
[D(x̃)]− E x∼p̂data

[D(x)] + λ E x̂∼px̂
[(∥∇x̂D(x̂)∥2 − 1)2] (1.10)

where px̂ is uniform distribution of points sampled along straight lines between
points from real data p̂data and generated data pmodel. And λ ∈ N is hyperparam-
eter. The last summand of this loss is the gradient penalty, which ensures that D
is 1-Lipschitz [18].

According to the authors of WGAN, it is desirable to train the critic, before
training generator, till optimality. Well trained critic is still able to provide useful
gradients for generator, whereas regular discriminator’s gradient would vanish.

1.3.2 Adversarially Learned Inference
The generator learns a mapping from latent space to data space but there is no
obvious ways to get the inverse mapping. Such function is useful for anomaly
detection, where we need to know the distribution of our data points in latent
space.

There are two articles about learning the mapping from data space to latent
space [19], [20]. These articles are using the same procedure to learn the mapping.
Additional neural network, which approximates the function data space to latent
space, is added to the existing GAN architecture: encoder. We denote point from
distribution of real samples encoded to latent space E(x).

Instead of distinguishing generated instances from real ones, the discriminator
tries to distinguish pair (x, E(x)) from (G(z), z)) where x ∼ p̂data and z ∼ pz.

9



The resulting game is

min
G,E

max
D

V (D, G) = E x∼p̂data
[log D(x, E(x))]+E z∼pz [1−log D(G(z), z)], (1.11)

where D, G, E are neural networks. The objective is to match the distributions
generating pairs (x, E(x)) and (G(z), z)).

10



2. Related Work
In this chapter, we review various machine learning methods suitable for anomaly
detection.

2.1 Anomaly detection methods
Anomaly detection is topic which has been extensively studied. Methods can be
categorized in three categories [12]: supervised, unsupervised and semi super-
vised, see Chapter 1.1.

Supervised methods require annotated datasets to be able to detect anoma-
lies. The need for annotated data is usually unattainable since anomalies are
rare. Also, the dataset would be highly imbalanced. Unsupervised anomaly de-
tection methods need only normal instance during training. This is quite feasible
since most of the data, in which one wants to find outliers, are not anomalies.
Sometimes this discipline is called novelty detection because it can be described
as detecting novelties, which do not conform to the distribution of already expe-
rienced examples.

In the subsequent subsections, we describe papers about anomaly detection [8]
and some traditional machine learning methods that can be used for unsupervised
anomaly detection. We use k-Means ensemble [8], One Class Support Vector
Machines [9], and Isolation Forest [7] as baselines for comparison with our model.

2.1.1 k-Means ensemble
In a recent paper by Porwal et al. [8], a novel outlier detection method is pro-
posed, the authors evaluate it on CCFD and compare it with Isolation Forest
(outperforming it) [7].

k-Means [21] is an unsupervised classification algorithm. The idea is that
given k ∈ N and data X, the algorithm tries to divide X into k sets (clusters)
such that examples in each cluster are similar to each other. Interested reader
can find out more about k-Means algorithm in book by James et al. [22].

The ensemble contains multiple k-Means models, each trained with different k.
It is necessary to choose suitable values of k for the models. The authors use
Silhouette score [23] for this purpose. Silhouette score of a data point is a measure
of how much does the data point in question belong to a cluster it has been
assigned to [8]. Silhouette score of the whole model is the average of average
silhouette scores of all clusters. Final values of k, used in the ensemble have
positive Silhouette score.

During prediction, each data point is assigned a vector (c1, . . . , cL) of clusters
(from L runs of k-Means). Anomalous behaviour of a data point is scored accord-
ing to weighted similarity of centroids of the clusters to which it has been assigned
by the ensemble, with high values meaning consistent, normal behaviour:

score =
∑L−1

i=1
∑L

j=i+1(|ci|+ |cj|) cos(Ci, Cj)∑L−1
i=1

∑L
j=i+1(|ci|+ |cj|)

, (2.1)

11



where Ci is centroid of cluster ci, |ci| is the number of samples assigned to clus-
ter ci, and cos is cosine similarity metric.

2.1.2 One Class Support Vector Machine
One Class Support Vector Machines (OC-SVM) is an unsupervised machine learn-
ing algorithm based on Support Vector Machines (SVM) [24] which, on the other
hand, is supervised. It is used for binary classification. The principle of SVM
lies in finding hyperplane separating the dataset into the two classes. When the
partition between individual classes is non-linear, use of some non-linear function
for transformation of data points is inevitable.

However, when training OC-SVM, instead of separating data points belonging
to two classes, we are trying to find hyperplane in n dimensional space such that
training examples are on one side and all other points x ∈ Rn lie on the opposite
side. Anomaly score is then determined by the distance of tested data point from
the hyperplane.

Major disadvantage of this algorithm is the quadratic computational complex-
ity (in number of data points) during training. On the other hand, evaluation
time is quite quick, when compared to other methods, see table 5.1.

Detailed description of Support Vector Machines (SVM) is out of the scope
of this thesis. Reader may get more information on this topic in book by Cris-
tianini [25].

2.1.3 Isolation Forest
Isolation Forest [7] is an unsupervised machine learning algorithm. It is similar to
Decision Tree and its ensemble version, Random Forest [10]. Idea of Isolation tree
is that anomalies require fewer splits in the decision tree than normal instances.
Isolation Forest is then an ensemble of such trees.

Anomaly score of a sample depends on the number of edges from the root to
a node, to which the sample has been assigned. It is given by

s(x, n) = 2
E [h(x)]

c(n) ,

where E [h(x)] is the average number of edges which x has to traverse from the
root to a terminal node during classification; c(n) is the average path length of
unsuccessful search in a binary search tree. The number of instances is n.

Advantage of Isolation Forest is its linear computational complexity in the
number of training examples.

2.1.4 GAN based methods
First model utilizing GANs to detect anomalies is, to the best of our knowledge,
AnoGAN proposed by Schlegl et al. [2]. They train model only on normal samples
and use iterative mapping to latent space to establish whether tested sample is
an anomaly, see Section 3.1.

The method AnoGAN uses for mapping to the latent space is quite inefficient,
which is addressed by Zenati et al. [3]. Instead of iteratively adjusting coefficients

12



of the mapped point in latent space, the authors train a BiGAN (1.11). Subse-
quently, they use the trained encoder to find the corresponding image in latent
space for each data point from real data, resulting in a much more time efficient
solution.

Li [4] uses GANs to detect anomalies in multivariate time series. They utilize
an LSTM [26] recurrent neural network as a model, enabling the architecture to
capture dependencies in time.

13



3. Our anomaly detection model
In this chapter we propose AnoWGAN, a model for detecting anomalies and nov-
elties. AnoWGAN uses Improved Wasserstein GAN [18] to learn the distribution
of normal examples. In order to find the latent representation of a sample, we
train an encoder from data space to latent space.

Our work is based on AnoGAN by Schlegl et al. [2], which uses regular
GANs [16] to learn the normal data manifold, and instead of encoder, AnoGAN
iteratively maps each individual sample to latent space to test whether it is an
anomaly.

We have tried to implement method using Adversarially Learned Inference [19]
for anomaly detection, proposed by Zenati et al. [3]. It turned out that training
Adversarially Learned Inference version of GANs is very difficult, see Section 4.4.
We have not been able to stabilize the training on the Credit Card Fraud Dataset.

ALI trains encoder, generator and discriminator concurrently (1.11). Instead,
we train the encoder after training of generator and critic.

Section 3.1 describes AnoGAN, method developed by Schlegl et al. [2]. In Sec-
tion 3.2 we propose AnoWGAN, a model for detecting anomalies. There are two
versions – with and without encoder. The first, which we denote AnoWGAN+e,
utilizes encoder to latent space and the other, denoted AnoWGAN–e, relies on
iterative mapping. Otherwise, the models are the same. When we describe some
feature that they have in common, we denote the model as AnoWGAN.

3.1 AnoGAN
Schlegl et al. [2] introduced new architecture using generative adversarial net-
works. The principle lies in learning the manifold, on which normal instances
(images of eye retina in this article) lie. Since anomalies do not lie on this man-
ifold, it is possible to distinguish them. GANs are mapping points from latent
space to data space but not the other way around. To solve this issue, the au-
thors propose a technique for mapping from data space to latent space. Given a
data point x, coordinates of a random point z from latent space are iteratively
adjusted to minimize the dissimilarity of x and G(z). They denote z after γ
iterations as zγ.

Method called feature matching, first proposed by Salimans et al. [27], is
utilized to enforce the mapped point to lie on the learned manifold. So the
discriminator loss LD used for mapping to latent space is following:

LD(zγ) =
∑
|f(x)− f(G(zγ))| (3.1)

where f(·) is the output of an intermediate layer of the discriminator. An inter-
mediate layer is the last but one layer in the computational graph of a neural
network. Discriminator loss enforces the mapped instance x to lie on the learned
manifold. This loss is combined with residual loss which measures the similarity
between generated instances and real data:

LR(zγ) =
∑
|x−G(zγ)| . (3.2)

14



Final loss is computed as a convex combination of residual and discriminator
loss:

L(zγ) = (1− ζ) · LR(zγ) + ζ · LD(zγ) (3.3)

where ζ ∈ [0, 1] is hyperparameter.

3.2 AnoWGAN
Our model uses Improved WGAN to learn the manifold of normal samples. Gen-
erator changes its parameters so that it maximizes critic’s output on the generated
instance:

LG = min−E z∼pz [D(G(z))]. (3.4)

Critic on the other hand changes its parameters to minimize its output on
generated instance and at the same time maximize the output on real instance.
Consequently, because we are training WGAN with gradient penalty, we need to
add the penalty to the critic’s loss:

LC = min
D

E z∼pz [D(G(z))]−E x∼p̂data
[D(x)]+λ E x̂∼px̂

[(∥∇x̂D(x̂)∥2−1)2], (3.5)

which is equation (1.10), where x̂ = ϵ · x + (1− ϵ) ·G(z), ϵ ∼ U(0, 1) and λ ≥ 0.
To detect anomalies of one data point x, we need to find its image z in

latent space. We have two versions of our model to find the image in latent
space. The first is similar to AnoGAN, it utilizes iterative mapping, minimizing
objective (3.3) with ζ = 0. This procedure is time consuming, see table 5.1.

AnoWGAN+e makes use of another neural network, encoder. The difference
of our model and the one proposed by Zenati et al. [3] is that we do not train the
encoder concurrently with generator and critic but after. Encoder is trained by
minimizing the absolute difference between instance x real data and its projection
back to the space of real data but through encoder and already trained generator:

LE = min
E

E x∼p̂data
[|x−G(E(x))|]. (3.6)

The choice to train the encoder independently of generator and critic leads to
much better stability of training, see Section 4.4 for instability of training of ALI.

15



4. Experiments
The focus of this chapter is the practical use of our model (AnoWGAN) to detect
fraudulent credit card transactions. In the first section, we explore the Credit
Card Fraud Dataset. Section 4.2 describes the neural network, used as our model,
and the training process. Section 4.3 describes the implementation of models
compared in the next chapter (5) and concrete hyperparameters necessary to
reproduce our results. Section 4.4 is about failed attempt to train the ALI model.

4.1 Dataset
There are not many publicly available datasets suitable for anomaly detection.
Most publicly available datasets, such as Arrythmia or Thyroid [28], do not have
a sufficient number of instances for GAN to be able to train itself on them.

Dataset1 which is used in this thesis is Credit Card Fraud Dataset (CCFD)
made available by Pozzolo et al. [6], [29]. There are 284 315 normal examples and
492 anomalous ones. This is suitable for the method of our choosing since we
only need normal instances during training.

The CCFD is anonymized, using Principle Component Analysis (PCA) [30],
so that it could be published. Every data point in CCFD consists of 30 real
numbers, e.g. amount; time measured from the first transaction. For the purpose
of our task, we omit the first and last feature (time and amount).

# 0 1 . . . 28 29
0 36462 0.774650 . . . 0.010446 118.80
1 172213 2.113557 . . . -0.038202 1.29
2 127823 1.933172 . . . -0.037490 70.00
3 158628 1.800412 . . . -0.023028 150.00
4 73543 -0.620267 . . . -0.342146 4.52

Table 4.1: Sample of the dataset. Each line is one instance (transaction) processed
by PCA. First column is time and the last one is amount.

In Figure 4.1 is the correlation matrix of the remaining features. We randomly
sampled 2000 normal instances and 50 anomalous to perform hyperparameter
search. The rest of the data is used for training and testing.

1Credit Card Fraud Dataset is available at https://www.kaggle.com/mlg-ulb/
creditcardfraud (visited: 04/07/2019)

16

https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/mlg-ulb/creditcardfraud


2 4 6 8 10 12 14 16 18 20 22 24 26 28

2

4

6

8

10

12

14

16

18

20

22

24

26

28

Correlation of features

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4.1: Correlation of used features.

4.2 AnoWGAN
In this section, we discuss the model used to detect anomalies in the Credit Card
Fraud Dataset. We developed two versions of the model – AnoWGAN–e and
AnoWGAN+e. Both of them use Improved WGAN [18] to learn the distribution
of normal instances. They differ in mapping to latent space during evaluation
– the first model uses iterative mapping and the other trained encoder, see Sec-
tion 3.2.

4.2.1 Learning normal data distribution
We use a fully connected neural network in both generator and critic. The overall
architecture of AnoWGAN used to learn normal data manifold is depicted in
Figure 4.2. The generator is slightly weaker, consisting of a smaller number of
layers, than the critic as we do need to have a very solid critic, one that is able
to ”criticize” the generated instances as good as possible.

After all hidden layers, there is Leaky ReLU activation function. ReLU is
abbrevation for rectified linear unit, defined as

ReLU(x) = max(0, x).

Leaky ReLU is parametrized function similar to ReLU with the difference that
it allows a small gradient for input values smaller than 0.

LeakyReLU(x; α) =

⎧⎨⎩x, if x ≥ 0
αx, otherwise

(4.1)

where α ∈ (0, 1).

17



After most of the layers (and their activations), there is a dropout [31].
Dropout ensures that each parameter of the layer is excluded from training (at
given time step) with some desired probability and therefore forcing the network
to train all the connections between layers. In our case, the probability is 0.2 for
the generator layers and 0.3 for critic layers.

Generator G(·)

36 32

48
64

28 28

64 54 48

32
8

1

Critic D(·)

Dense layer
Leaky ReLU 0.2
Dropout 0.2
Dropout 0.3
Latent space
Data space

Figure 4.2: Diagram of our model. The numbers under dense layers denote their
output sizes. The numbers under latent and data space denote the dimensionality.

Latent space dimension is 36 when the encoder is utilized, and 12 when we
use only mapping. Instead of using uniform random distribution for sampling as
in [18], we use normal distribution for it helps the model to converge.

The training procedure for learning dataset distribution can be seen in Algo-
rithm 4.1.

4.2.2 Detecting anomalies
In the previous subsection, we described a model which learns the distribution of
normal instances. Now we would like to use that distribution to test whether a
data point is an anomaly or not. We use two methods to do that.

First is iterative mapping to latent space which was proposed by Schlegl et
al. [2], see Section 3.1. The second approach we chose, is to train another neural
network which learns the mapping from data space pdata to latent space pz, see
Section 3.2

18



Encoder E(·)

28

64

32 36

Generator G(·)

36 32

48
64

28

Dense layer
Leaky ReLU 0.2
Latent space
Data space

Figure 4.3: Diagram of the encoder. The rest of the network (generator and
critic) is the same as in Figure 4.2

The architecture of encoder used to detect anomalies in CCFD and its place
within the whole network is depicted in Figure 4.3.

4.2.3 Training and hyperparameters
In this subsection, we describe the training process and hyperparameters of both
the model used to learn the distribution of the data and the encoder to latent
space.

Generator and critic

At the start of the training, we pre-train the critic using 2000 update steps. Unlike
training regular GANs, where it is desirable to balance training of generator and
discriminator, in WGANs on the other hand we want the critic to be well trained
at every stage. We find this necessary because even in the beginning of the
training the generator needs to have a good “feedback” from the critic on the
samples it generates, and Wasserstein distance makes it possible for the critic to
provide usable gradients even if it is much “better” than the generator.

The initial learning rate of the generator is set to 3 · 10−5 and critic starts
with 10−4.

We train our model for 5 epochs on batches of size 4. At the start of each
epoch, we perform 1000 update steps of the critic and 30 update steps of the
generator. After every other epoch, we divide the learning rate of the generator
and the critic by 1.65 and 1.25 respectively.

For every update of the generator, we update the critic seven times. This
is necessary; otherwise, if we would do one update of critic to one update of
generator, the generator would become too good with respect to the critic. And

19



Algorithm 4.1 Pseudocode of training the model to learn the representation of
normal instances.
# c l r i s c r i t i c l e a rn ing ra t e
# g l r i s genera tor l e a rn ing ra t e

t r a i n c r i t i c 2000 t imes
for e in epochs :

# lower l e a rn ing ra t e every two epochs
i f e > 0 and e i s even :

c l r /= 1.25
g l r /= 1.65

# pre t r a in c r i t i c and genera tor
t r a i n c r i t i c 1000 t imes
t r a i n genera to r 30 t imes

while e has not ended :
# c r i t i c i t e r a t i o n s inc rea se wi th epoch
for c in 1 . . . ( 7 + 2∗ e ) :

take batch o f s i z e 4
t r a i n c r i t i c

t r a i n genera to r

20



Algorithm 4.2 Pseudocode of encoder training.
# e l r i s encoder l e a rn ing ra t e
r e s t o r e genera to r

for e in encoder epochs :
# lower l e a rn ing ra t e every four epochs
i f e > 0 and e modulo 4 == 0 :

e l r /= 2

while e has not ended :
take batch o f s i z e 32
t r a i n encoder

it would be easy for the generator to generate samples which the critic would not
be able to distinguish from the real samples; however, the generated instances
would not be of a good quality (as the critic itself would be weak). Every epoch,
the number of critic iterations is increased by two. The training procedure is
displayed in Algorithm 4.1.

Encoder

Keeping the parameters of the generator fixed, we train the encoder for 6 epochs
with mini-batches of size 32. The critic is not used at all during encoder training.
The initial learning rate is set to 10−5 and is also decayed, but this time every
four epochs by factor of 0.5.

We use t-Distributed Stochastic Neighbourhood Embedding (t-SNE) [32] to
visualize the learned manifold 4.4. Algorithm t-SNE is mostly used for dimension-
ality reduction with the intention to visualize the data in two or three-dimensional
space.

21



100 50 0 50 100

100

75

50

25

0

25

50

75

100

Visualization of learned manifold

Figure 4.4: Visualization of learned manifold using t-SNE. Twenty thousand
training samples are mapped to the latent space through the encoder to make
this image. There is no reasonable interpretation of axes.

4.3 Implementation
We used a computer with Intel R⃝ CoreTM i7-6700 CPU and Gentoo2 operating
system to run the experiments.

The model is implemented in Tensorflow 1.12 [33]. Dataset, which is available
in comma separated value format, is converted to .npy format, which is used by
Python library NumPy 1.15.4 [34] for storing numerical arrays. We ran the model
in Python 3.6.5. Methods, to which we compare our model (One Class Support
Vector Machines and Isolation Forest), are already implemented in Scikit-learn
0.20.2 [35] library for Python. The implemented model is an attachment to this
thesis, see Section A.1.

In the next subsections, we describe all hyperparameters used during training
of baselines and our model.

4.3.1 Hyperparameters of baselines
We use OC-SVM, k-Means ensemble and Isolation Forest to compare our model
with. The results of k-Means ensemble are taken from the original paper [8].
We have implemented the model but the results we have got were inferior to
those in the paper (training is sensitive to the order in which the data points are

2https://www.gentoo.org (visited 04/28/2019)

22

https://www.gentoo.org


Algorithm 4.3 Constructor for OC-SVM class in Scikit-learn.
OneClassSVM( coe f 0 =0.0 , degree =3, \

gamma=0.007 , k e rne l=’ rb f ’ , \
max iter=−1, nu=0.0005 , \
random state =41, sh r i nk ing=True , \
t o l =0.001)

Algorithm 4.4 Constructor for Isolation Forest class in Scikit-learn.
I s o l a t i o n F o r e s t ( n e s t imato r s =100 , max samples=’ auto ’ , \

contamination =0.01 , max features =1.0 , \
boots t rap=False , n j obs=−1, \
random state =41, verbose =0, \
behaviour=”new” )

presented [8]), so we decided not to use our implementation and state the results
from the paper.

OC-SVM has hyperparametes used in kernel3 on Kaggle website. Hyperpa-
rameters of Isolation Forest are also from a kernel4 on Kaggle website, from which
the CCFD comes. As the model is implemented in Scikit-learn 0.20.2 [35] we pro-
vide the hyperparameters as a constructor of OC-SVM class in Scikit-learn, see
algorithms 4.3, 4.4.

4.3.2 Hyperparameters of AnoWGAN
Hyperparameters used for training and evaluation of our model on the Credit
Card Fraud Dataset dataset are presented in Table 4.2. Furthermore, training
uses the following hyperparameters.

• After every other epoch, we divide the learning rate of the generator and
the critic by 1.65 and 1.25 respectively.

• The encoder learning rate is divided by 2 every four epochs.

• At the start of the training, the critic is pre-trained on 2000 training steps.

• Starting from the second epoch, the critic and the generator are pre-trained
on 1000 and 30 training steps respectively.

• The number of critic iterations is increased by 2 every epoch.

• At the end of the last epoch, during normal data distribution learning, the
generator is trained for 10 more steps.

3https://www.kaggle.com/neoyipeng2018/one-class-svm-and-data-leakage (visited:
04/08/2019)

4https://www.kaggle.com/rgaddati/unsupervised-fraud-detection-isolation-
-forest (visited: 04/15/2019)

23

https://www.kaggle.com/neoyipeng2018/one-class-svm-and-data-leakage
https://www.kaggle.com/rgaddati/unsupervised-fraud-detection-isolation-forest
https://www.kaggle.com/rgaddati/unsupervised-fraud-detection-isolation-forest


Hyperparameter value
Batch size 4
Batch size – encoder 32
Initial learning rate G 3.0 · 10−5

Initial learning rate D 10−4

Initial learning rate E 10−5

Initial critic iterations 7
Epochs 5
Epochs – encoder 6
Penalty coefficient λ 12
Mapping coefficient ζ 0.0
Dropout – generator 0.2
Dropout – critic 0.3
Latent space dimensionality – encoder 36
Latent space dimensionality – mapping 12
Mapping iterations 70
Mapping learning rate 0.09
Adam first momentum β1 0.1
Adam second momentum β2 0.9

Table 4.2: Hyperparameters used during training and evaluation.

When splitting dataset to train, development and test parts, we use random
seed 42 (for NumPy). Tensorflow uses random seed 88, so does NumPy when
sampling the dataset. When evaluating we set NumPy random seed to 42.

4.4 Efficient AnoGAN
We have tried to implement anomaly detection technique from [3]. However,
BiGANs showed themselves to be very unstable during training and we have not
been able to stabilize it on the CCFD.

In Figures 4.5 and 4.6 we show loss functions for different sets of parameters.
These three models differ in the number of the discriminator iterations (how
many training steps discriminator takes per one generator step) and batch sizes.
All models have learning rates of both the discriminator and the generator set
to 10−5, which was empirically chosen. The models were trained for 10 epochs.

Though higher batch size leads to lower variance of the loss, it is obvious the
loss functions do not show signes of convergence; for the generator tries to mini-
mize the same loss function the disciminator maximizes. It is natural that at the
beginning of the training losses of generator and discriminator are symmetrical.
However, unlike what we observe in the Figures 4.5 and 4.6, we would expect
the loss functions not to stay symmetrical and reach Nash equilibrium [36]. It
is however not proven that it will converge, moreover it has been proven that in
some cases (on some types of data) GANs do not converge [36].

24



0 200 400 600 800 1000
Time

5

0

5

10
Lo

ss

BiGAN generator loss

A: dicriminator_iter=1, batch_size=4
B: dicriminator_iter=3, batch_size=4
C: dicriminator_iter=1, batch_size=12

Figure 4.5: BiGAN generator loss.

0 200 400 600 800 1000
Time

15

10

5

0

5

Lo
ss

BiGAN discriminator loss

A: dicriminator_iter=1, batch_size=4
B: dicriminator_iter=3, batch_size=4
C: dicriminator_iter=1, batch_size=12

Figure 4.6: BiGAN discriminator loss.

25



5. Evaluation
This chapter presents results of performance measurements of AnoWGAN whose
architecture is described in Section 4.2.

In the first section of this chapter, we compare our model, both with encoder
and without it, to k-Means ensemble [8], OC-SVM algorithm [24], and Isolation
Forest [7]. In the second section, we analyze received results.

AnoWGAN+e has the highest average AUPRC of all compared meth-
ods, see Table 5.2 and Figure 5.1. Table 5.1 shows the difference in performance,
measured by AUPRC and evaluation time of studied methods. Table 5.2 com-
pares precision of tested methods at different recall levels.

5.1 Results
We use area under precision-recall curve (AUPRC) and precision at various recall
levels as evaluation metrics. It is important to keep the ratio of normal and
anomalous instances almost the same during evaluation since PR curve depends
on it.

Efficient AnoGAN (in Table 5.1) is the model proposed by Zenati [3], which
we have not been able to stabilize, see Section 4.4. We use it as a GAN baseline.

Method Average AUPRC Variance Evaluation time (s)
AnoWGAN+e 0.4625 0.00378 9.96
One Class SVM 0.4113 0.00475 1.03
AnoWGAN–e 0.2706 0.00320 433.10
k-Means ensemble1 0.2231 0.00144 —
Isolation Forest 0.1827 0.00261 2.27
Efficient AnoGAN 0.1196 0.00073 10.02

Table 5.1: Evaluation of compared methods.

The dataset, with which we work, is highly imbalanced — approximately
577 normal examples to 1 anomalous. We have 9735 normal examples and 442
anomalous ones for testing. To keep the ratio of normal and anomalous instances
as close as possible to the original one, we make predictions on all the normal
instances and 17 anomalous, arriving at ratio 572 to 1. This is repeated 26 times
for different anomalous instances and the area under PR curves is averaged.

We run 29-fold cross validation. Each time the model is trained on a different
subset of data and evaluated on a test set (disjoint from corresponding train set).
Sets of normal data of the test sets (from the 29 runs) are disjoint. Resulting
AUPRC is the average of AUPRCs from these runs.

Evaluation time has been measured on a sample consisting of 10117 examples.
The measurement is conducted on a personal computer with CPU Intel R⃝ CoreTM

1Results for this method are taken from the paper [8] proposing it. The variance is from 10
runs, each with different ordering of dataset.

26



i7-6700. We have run five such evaluations and averaged the measured times, the
variance of these runs is negligible: it is lower than one percent.

To illustrate the difference between studied techniques, we average precision
from the 29 runs at each recall level, making precision-recall curve. Linear inter-
polation is used to smooth the curve 5.1.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Averaged PR-curves

AnoWGAN+e (auprc = 0.4625)
OC-SVM (auprc = 0.4113)
Isolation Forest (auprc = 0.1827)
AnoWGAN e (auprc = 0.2706)
K-Means ensemble (auprc = 0.2231)

Figure 5.1: Graph of averaged precision-recall curves.

Our method (AnoWGAN+e) achieved the highest precision of all
methods at recall levels 0 – 0.2 and 0.6 – 0.9, see table 5.2. Although k-Means
ensemble has low AUPRC, its precision is better than OC-SVM’s at lower recall
levels but it has been outperformed by AnoWGAN+e in every metric, see table 5.2
and figure 5.1.

Method
Recall 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

AnoWGAN+e 0.89 0.78 0.59 0.53 0.45 0.35 0.30 0.20 0.05
OC-SVM 0.70 0.69 0.62 0.59 0.48 0.32 0.23 0.08 0.01
Isolation Forest 0.34 0.32 0.24 0.22 0.17 0.13 0.11 0.07 0.02
AnoWGAN–e 0.62 0.51 0.34 0.31 0.20 0.14 0.12 0.07 0.03
k-Means ensemble 0.79 0.61 0.21 0.10 0.05 0.05 0.04 0.01 0.00

Table 5.2: Precision at different recall levels.

In Figure 5.2, there is a visualization of normal and anomalous data points
mapped into latent space.

27



40 20 0 20 40 60

40

20

0

20

40

60

80

Representation of data points in latent space

normal
anomalous

Figure 5.2: Visualization of mapped points (using encoder) to latent space. THe
dimensionality of the latent space is reduced using t-SNE. There is no reasonable
interpretation of axes.

5.2 Discussion
The model we propose, AnoWGAN+e, has the highest average AUPRC from all
compared methods, surpassing the state-of-the-art OC-SVM (to the best of our
knowledge). It also outperforms other models in precision at some recall levels,
especially from 10% to 20% and from 70% to 80%. Both of these intervals can
be very useful for real world applications; for example banks may want to detect
a portion of credit card frauds with high level of certainty, where the interval
from 10% to 20% comes into use (at 10% recall almost 90% of samples marked
as anomalies actually are anomalies).

A model with high recall (but lower precision) also has an important place in
fraud detection. Consider 80% recall, then our model detects anomalies with 20%
precision. When we take into account that there are 492 anomalies in the dataset,
then this means that we can detect 80% of them by manually examining less
than 2000 transactions.

Porwal et al. [8] claim they can “identify 40% of fraud cases with high preci-
sion” (0.1 precision). However, we outperform their method by identifying 80%
of fraud cases even with double precision, see table 5.2.

AnoWGAN–e did not perform very well. We tried running the evaluation with
twice the number of iterations but the improvement of AUPRC was insignificant,
considering doubling the evaluation time. Its evaluation time is, as expected,

28



slower than the times of the rest of the algorithms.
We believe that the difference in AUPRC of AnoWGAN with and without

encoder is caused by the fact that encoder learns the mapping of normal exam-
ples very well and does not experience anomalous ones during training, resulting
in a bigger gap between the normal and the anomalous. Whereas mapping each
individual sample relies only on the generator. In other words, the encoder com-
pensates for imperfect generator. We can see that utilizing encoder to latent
space is essential for achieving good results.

We feel obliged to say that the time measurements are probably influenced
by the Python frameworks used by the compared methods – Scikit-learn [35] and
Tensorflow [33]. Some of the models might run faster on GPU that CPU, but we
wanted the measurements to be comparable.

29



Conclusion
This thesis focuses on anomaly detection, utilizing Generative adversarial net-
works. Our goal was to study GAN-based anomaly detection methods and see if
they can detect fraudulent credit card transactions in Credit Card Fraud Dataset.

We proposed a model employing Wasserstein GANs for learning the distribu-
tion of normal examples, and an encoder (in the form of deep neural network)
for mapping from data space to latent space. Our model shows better stability
than the one proposed by Zenati et al. [3].

AnoWGAN+e achieved the highest average AUPRC and exceeded
all other models in precision at most of the recall levels, making it the
new state-of-the-art (instead of OC-SVM) on CCFD. Our model has almost 90%
precision at 10% recall, which is 10% more than the next best method (k-Means
ensemble).

At 80% recall, our model detects anomalies with 20% precision (more than
two times more than the next best method). There are 492 anomalies in the
dataset, which means we can detect 80% of frauds by manually examining
less than 2000 transactions.

As expected, evaluation time of AnoWGAN–e is quite long and therefore it
shows the importance of utilizing encoder to latent space. The encoder also
significantly improved the model’s ability to detect anomalies.

In 2019, new articles about GANs have been emerging ([37]–[39]) but we did
not manage to study them nor use them for anomaly detection.

The training procedure of WGANs and hyperparameter selection has been
exhaustive and the model still showed instability. In future work, we believe
it is crucial to improve the stability of training of GANs and make them more
robust to hyperparameter change. It would also be interesting to know how do
the studied methods compare on lower (or higher) dimensional datasets and how
many samples are necessary to obtain a usable GAN-based model.

30



Bibliography
[1] K. G. Mehrotra, C. K. Mohan, and H. Huang, Anomaly Detection Principles

and Algorithms. Springer, 2017, isbn: 978-3-319-67526-8.
[2] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs,

“Unsupervised anomaly detection with generative adversarial networks to
guide marker discovery,” in Information Processing in Medical Imaging,
Springer, 2017, pp. 146–157, isbn: 978-3-319-59050-9.

[3] H. Zenati, C. S. Foo, B. Lecouat, G. Manek, and V. R. Chandrasekhar,
Efficient GAN-based anomaly detection, 2018. arXiv: 1802.06222v1.

[4] D. Li, D. Chen, J. Goh, and S.-k. Ng, Anomaly Detection with Generative
Adversarial Networks for Multivariate Time Series, 2018. arXiv: 1809 .
04758.

[5] R. Chalapathy, A. K. Menon, and S. Chawla, “Anomaly Detection using
One-Class Neural Networks,” CoRR, vol. abs/1802.06360, 2018.

[6] A. D. Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi, “Calibrating
Probability with Undersampling for Unbalanced Classification,” in 2015
IEEE Symposium Series on Computational Intelligence, IEEE, 2015.

[7] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” IEEE, 2008. doi:
10.1109/ICDM.2008.17.

[8] U. Porwal and S. Mukund, “Credit card fraud detection in e-commerce: An
outlier detection approach,” 2018. arXiv: 1811.02196.

[9] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribution,”
Neural Computation, 2001. doi: 10.1162/089976601750264965.

[10] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997, isbn: 978-0-07-
042807-2.

[11] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[12] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Computing Surveys, 2009. doi: 10.1145/1541880.1541882.

[13] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference for Learning Representations, 2015, 2014.

[14] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proceedings of the 34th International Conference on
Machine Learning, 2017, pp. 214–223.

[15] C. Villani, Optimal transport: old and new, ser. Grundlehren der mathema-
tischen Wissenschaften. Springer, 2009, isbn: 978-3-540-71049-3.

[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Ad-
vances in Neural Information Processing Systems 27, Curran Associates,
Inc., 2014, pp. 2672–2680.

31

https://arxiv.org/abs/1802.06222v1
https://arxiv.org/abs/1809.04758
https://arxiv.org/abs/1809.04758
https://doi.org/10.1109/ICDM.2008.17
https://arxiv.org/abs/1811.02196
https://doi.org/10.1162/089976601750264965
http://www.deeplearningbook.org
https://doi.org/10.1145/1541880.1541882


[17] M. Arjovsky and L. Bottou, “Towards Principled Methods for Training Gen-
erative Adversarial Networks,” in 5th International Conference on Learning
Representations, 2017, 2017.

[18] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” in Advances in Neural Information
Processing Systems 30, Curran Associates, Inc., 2017, pp. 5767–5777.

[19] V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropietro,
and A. C. Courville, “Adversarially learned inference,” in 5th International
Conference on Learning Representations, 2017, 2017.

[20] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learning,”
in 5th International Conference on Learning Representations, 2017, 2016.

[21] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on In-
formation Theory, 1982. doi: 10.1109/TIT.1982.1056489.

[22] An introduction to statistical learning: with applications in R, Springer,
2013, isbn: 978-1-4614-7137-0.

[23] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis,” Journal of Computational and Applied Math-
ematics, 1987. doi: 10.1016/0377-0427(87)90125-7.

[24] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
1995. doi: 10.1007/BF00994018.

[25] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Ma-
chines and Other Kernel-based Learning Methods. Cambridge University
Press, 2000. doi: 10.1017/CBO9780511801389.

[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Com-
putation, 1997. doi: 10.1162/neco.1997.9.8.1735.

[27] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen,
and X. Chen, “Improved techniques for training gans,” in Advances in Neu-
ral Information Processing Systems 29, 2016, pp. 2234–2242.

[28] D. Dheeru and E. Karra Taniskidou, UCI machine learning repository,
2017. [Online]. Available: http : / / archive . ics . uci . edu / ml (visited
on 01/02/2019).

[29] A. Dal Pozzolo, “Adaptive machine learning for credit card fraud detection,”
PhD thesis, Université Libre de Bruxelles, 2015.

[30] I. T. Jolliffe, Principal Component Analysis. Springer New York, 1986, isbn:
978-1-4757-1904-8.

[31] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[32] L. Maaten van der and G. Hinton, “Visualizing data using t-SNE,” Journal
of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

32

https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1007/BF00994018
https://doi.org/10.1017/CBO9780511801389
https://doi.org/10.1162/neco.1997.9.8.1735
http://archive.ics.uci.edu/ml


[33] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V.
Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems, Software available from tensorflow.org, 2015. [Online].
Available: https://www.tensorflow.org/.

[34] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy array,”
Computing in Science & Engineering, 2011. doi: 10.1109/MCSE.2011.37.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-
learn: Machine learning in Python,” Journal of Machine Learning Research,
vol. 12, pp. 2825–2830, 2011.

[36] L. Mescheder, A. Geiger, and S. Nowozin, “Which training methods for
GANs do actually converge?” In Proceedings of the 35th International Con-
ference on Machine Learning, ser. Proceedings of Machine Learning Re-
search, vol. 80, 2018, pp. 3481–3490.

[37] H. He, H. Wang, G.-H. Lee, and Y. Tian, “Bayesian modelling and monte
carlo inference for GAN,” in International Conference on Learning Repre-
sentations, 2019.

[38] Y. Yazıcı, C.-S. Foo, S. Winkler, K.-H. Yap, G. Piliouras, and V. Chan-
drasekhar, “The unusual effectiveness of averaging in GAN training,” in
International Conference on Learning Representations, 2019.

[39] P. Mertikopoulos, B. Lecouat, H. Zenati, C.-S. Foo, V. Chandrasekhar, and
G. Piliouras, “Optimistic mirror descent in saddle-point problems: Going
the extra(-gradient) mile,” in International Conference on Learning Repre-
sentations, 2019.

33

https://www.tensorflow.org/
https://doi.org/10.1109/MCSE.2011.37


List of Figures

1.1 Neural network with input layer of size 2, one hidden layer of size
3 and output layer of size 1. . . . . . . . . . . . . . . . . . . . . . 5

1.2 Illustration of GAN. The darker grey rectangles represent arrays of
neurons and the lighter grey shapes are connections between them. 8

4.1 Correlation of used features. . . . . . . . . . . . . . . . . . . . . . 17
4.2 Diagram of our model. The numbers under dense layers denote

their output sizes. The numbers under latent and data space de-
note the dimensionality. . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Diagram of the encoder. The rest of the network (generator and
critic) is the same as in Figure 4.2 . . . . . . . . . . . . . . . . . . 19

4.4 Visualization of learned manifold using t-SNE. Twenty thousand
training samples are mapped to the latent space through the en-
coder to make this image. There is no reasonable interpretation of
axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 BiGAN generator loss. . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 BiGAN discriminator loss. . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Graph of averaged precision-recall curves. . . . . . . . . . . . . . . 27
5.2 Visualization of mapped points (using encoder) to latent space.

THe dimensionality of the latent space is reduced using t-SNE.
There is no reasonable interpretation of axes. . . . . . . . . . . . . 28

34



List of Abbreviations
ALI Adversarially Learned Inference. 14–16

AUPRC Area under precision-recall curve. 3, 7, 26–30

BiGAN Bidirectional GAN. 13

CCFD Credit Card Fraud Dataset. 2, 3, 11, 14, 16, 17, 19, 23, 24, 30

CPU Central Processing Unit. 22, 26

GAN Generative adversarial network. 2–4, 7–9, 12–14, 16, 19, 24, 30, 34

IF Isolation Forest. 2, 3, 11, 12, 22, 23, 26, 27

JS divergence Jensen-Shannon divergence. 6, 9

KL divergence Kullback-Leibler divergence. 6

OC-SVM One Class Support Vector Machines. 2, 3, 11, 12, 22, 23, 26–28, 30

PCA Principle Component Analysis. 16

ROC receiver operating characteristic. 7

SVM Support Vector Machines. 12

t-SNE t-Distributed Stochastic Neighbourhood Embedding. 21, 28, 34

WGAN Wasserstein GAN. 9, 14, 15, 17, 19, 30

35



A. Attachments

A.1 First Attachment – AnoWGAN+e scripts
The ZIP file contains directory with scripts which can be used to reproduce results
of AnoWGAN+e. The folder structure is following:

anowgane
README...............................Manual on how to run the scripts
Makefile...................................Makefile to run the scripts
ad wgan.py.............Contains neural network and training procedure
convert.py................................Used for converting dataset
convert.sh................................Used for converting dataset
convert2.py...............................Used for converting dataset
credit card dataset.py..............................Dataset handler
requirements.txt .............................. Python3 requirements
runner.sh .......................... Script used for training/evaluating
utils.py ................................. Module used by ad wgan.py

A.1.1 Usage
The scripts are intended to run on Unix operating system. For implementation
details see section 4.3. To use the scripts follow this procedure:

1. Download the dataset1 and save it as creditcard.csv to the same folder
as the rest of scripts.

2. Call make requirements to install necessary Python packages.

3. Call make convert to convert and split the dataset.

4. Call make encoder to run the training and evaluation. This action runs
training on four different portions of dataset at once. It takes about 2 hours
on Intel R⃝ CoreTM i7-6700 CPU and uses about 1.5 GB of disk space.

5. Call make clean remove files created during converting and training.

1https://www.kaggle.com/mlg-ulb/creditcardfraud (visited: 04/07/2019)

36

https://www.kaggle.com/mlg-ulb/creditcardfraud

	Introduction
	Background
	Machine Learning
	Neural Networks

	Statistics
	Generative adversarial networks
	Wasserstein GAN
	Adversarially Learned Inference


	Related Work
	Anomaly detection methods
	k-Means ensemble
	One Class Support Vector Machine
	Isolation Forest
	GAN based methods


	Our anomaly detection model
	AnoGAN
	AnoWGAN

	Experiments
	Dataset
	AnoWGAN 
	Learning normal data distribution
	Detecting anomalies
	Training and hyperparameters

	Implementation
	Hyperparameters of baselines
	Hyperparameters of AnoWGAN

	Efficient AnoGAN

	Evaluation
	Results
	Discussion

	Conclusion
	Bibliography
	List of Figures
	List of Abbreviations
	Attachments
	First Attachment – AnoWGAN+e scripts
	Usage



